:离心压缩机;叶轮;模态试验;ANSYS;LMS;NREC
1.3 叶轮模态数值仿真 1.3.1 模型建立 运用叶片造型软件NREC进行建模并进行网格划分,然后导入到ANSYS进行数值计算,采用无约束载荷,模型及其网格划分见图7。叶轮材料参数设置为:弹性模量2.0×105MPa,泊松比为0.3,材料密度为7 800kg/m。本文选择的单元类型是SOLID185,为提高计算精度,采用六面体单元对叶轮进行网格划分,划分的最终结果是共有110 580个节点,87 300个单元。 1.3.2 约束及加载 固有频率和固有振型是由结构的几何形状、材料特性以及约束载荷形式决定的。本文对离心压缩机叶轮采用自由模态分析,即无约束,无加载。在自由模态分析中,对于所选取的实体单元有六个刚体自由度,即六阶刚体模态,其固有频率为零;因此,模态分析求解的叶轮前六阶固有频率为零,第七阶为真正意义上的第一阶固有频率。 [8-9] 3 结论 1) 将叶轮的LMS试验模态分析结果与ANSYS有限元分析结果相对比,发现有一定的偏差,但模态频率变化趋势和模态阵型相一致,偏差在允许的范围内,所以认为ANSYS有限元模态分析的结果是可信的。 2) 根据ANSYS模态分析结果,在其他参数都不变的条件下,随着叶片厚度增大,叶轮相对应的模态频率升高;为叶轮加筋,会引起叶轮模态频率改变;随着叶片数量增加,叶轮的模态频率也会升高。 3) 这三种优化方式对叶轮振动特性都有一定的影响,但是在不影响流道的基础上,加筋最佳。 |