循环流化床锅炉
一.循环流化床锅炉结构
锅炉采用单锅筒,自然循环方式,总体上分为前部及尾部两个竖井。前部竖井为总吊结构,四周有膜式水冷壁组成。自下而上,依次为一次风室、密相床、悬浮段,尾部烟道自上而下依次为高温过热器、低温过热器及省煤器、空气预热器。尾部竖井采用支撑结构,两竖井之间由立式旋风分离器相连通,分离器下部联接回送装置及灰冷却器。燃烧室及分离器内部均设有防磨内衬,前部竖井用敖管炉墙,外置金属护板,尾部竖井用轻型炉墙,由八根钢柱承受锅炉全部重量。
锅炉采用床下点火(油或煤气),分级燃烧,一次风比率占50—60%,飞灰循环为低倍率,中温分离灰渣排放采用干式,分别由水冷螺旋出渣机、灰冷却器及除尘器灰斗排出。炉膛是保证燃料充分燃烧的关键,采用湍流床,使得流化速度在3.5—4.5m/s,并设计适当的炉膛截面,在炉膛膜式壁管上铺设薄内衬(高铝质砖),即使锅炉燃烧用不同燃料时,燃烧效率也可保持在98—99%以上。
分离器入口烟温在800℃左右,旋风筒内径较小,结构简化,筒内仅需一层薄薄的防磨内衬(氮化硅砖)。其使用寿命较长。循环倍率为10—20左右。
循环灰输送系统主要由回料管、回送装置,溢流管及灰冷却器等几部分组成。
床温控制系统的调节过程是自动的。在整个负荷变化范围内始终保持浓相床床温850-950℃间的某一恒定值,这个值是最佳的脱硫温度。当自控制不投入时,靠手动也能维持恒定的温床。
保护环境,节约能源是各个国家长期发展首要考虑的问题,循环流化床锅炉正是基于这一点而发展起来,其高可靠性,高稳定性,高可利用率,最佳的环保特性以及广泛的燃料适应性,特别是对劣质燃料的适应性,越来越受到广泛关注,完全适合我国国情及发展优势。
二.循环流化床锅炉简介
(circulating fluidized bed)
是在鼓泡床锅炉(沸腾炉)的基础上发展起来的,因此鼓泡床的一些理论和概念可以用于循环流化床锅炉。但是又有很大的差别。早期的循环流化床锅炉流化速度比较高,因此称作快速循环循环床锅炉。快速床的基本理论也可以用于循环流化床锅炉。鼓泡床和快速床的基本理论已经研究了很长时间,形成了一定的理论。要了解循环流化床的原理,必须要了解鼓泡床和快速床的理论以及物料从鼓泡床→湍流床→快速床各种状态下的动力特性、燃烧特性以及传热特性。
一. 流态化:
当固体颗粒中有流体通过时,随着流体速度逐渐增大,固体颗粒开始运动,且固体颗粒之间的摩擦力也越来越大,当流速达到一定值时,固体颗粒之间的摩擦力与它们的重力相等,每个颗粒可以自由运动,所有固体颗粒表现出类似流体状态的现象,这种现象称为流态化。
对于液固流态化的固体颗粒来说,颗粒均匀地分布于床层中,称为“散式”流态化。而对于气固流态化的固体颗粒来说,气体并不均匀地流过床层,固体颗粒分成群体作紊流运动,床层中的空隙率随位置和时间的不同而变化,这种流态化称为“聚式”流态化。循环流化床锅炉属于“聚式”流态化。
固体颗粒(床料)、流体(流化风)以及完成流态化过程的设备称为流化床。
二. 临界流化速度
1. 对于由均匀粒度的颗粒组成的床层中,在固定床通过的气体流速很低时,随着风速的增加,床层压降成正比例增加,并且当风速达到一定值时,床层压降达到最大值,该值略大于床层静压,如果继续增加风速,固定床会突然解锁,床层压降降至床层的静压。如果床层是由宽筛分颗粒组成的话,其特性为:在大颗粒尚未运动前,床内的小颗粒已经部分流化,床层从固定床转变为流化床的解锁现象并不明显,而往往会出现分层流化的现象。颗粒床层从静止状态转变为流态化进所需的最低速度,称为临界流化速度。随着风速的进一步增大,床层压降几乎不变。循环流化床锅炉一般的流化风速是2-3倍的临界流化速度。
2. 影响临界流化速度的因素:
(1)料层厚度对临界流速影响不大。
(2)料层的当量平均料径增大则临界流速增加。
(3)固体颗粒密度增加时临界流速增加。
(4)流体的运动粘度增大时临界流速减小:如床温增高时,临界流速减小。床温与临界流速的关系如图所示。
循环流化床锅炉节能改造技术
① 加装燃油节能器;
经燃油节能器处理之碳氢化合物,分子结构发生变化,细小分子增多,分子间距离增大,燃料的粘度下降,结果使燃料油在燃烧前之雾化、细化程度大为提高,喷到燃烧室内在低氧条件下得到充分燃烧,因而燃烧设备之鼓风量可以减少15%至20%,避免烟道中带走之热量,烟道温度下降5℃至10℃。燃烧设备之燃油经节能器处理后,由于燃烧效率提高,故可节油4.87%至6.10%,并且明显看到火焰明亮耀眼,黑烟消失,炉膛清晰透明。彻底清除燃烧油咀之结焦现象,并防止再结焦。解除因燃料得不到充分燃烧而炉膛壁积残渣现象,达到环保节能效果。大大减少燃烧设备排放的废气对空气之污染,废气中一氧化碳(CO)、氧化氮(NOx)、碳氢化合物(HC)等有害成分大为下降,排出有害废气降低50%以上。同时,废气中的含尘量可降低30%—40%。安装位置:装在油泵和燃烧室或喷咀之间,环境温度不宜超过360℃。
② 安装冷凝型燃气锅炉节能器;
燃气锅炉排烟中含有高达18%的水蒸气,其蕴含大量的潜热未被利用,排烟温度高,显热损失大。天然气燃烧后仍排放氮氧化物、少量二氧化硫等污染物。减少燃料消耗是降低成本的最佳途径,冷凝型燃气锅炉节能器可直接安装在现有锅炉烟道中,回收高温烟气中的能量,减少燃料消耗,经济效益十分明显,同时水蒸气的凝结吸收烟气中的氮氧化物,二氧化硫等污染物,降低污染物排放,具有重要的环境保护意义。
③ 采用冷凝式余热回收锅炉技术;
传统锅炉中,排烟温度一般在160~250℃,烟气中的水蒸汽仍处于过热状态,不可能凝结成液态的水而放出汽化潜热。众所周知,锅炉热效率是以燃料低位发热值计算所得,未考虑燃料高位发热值中汽化潜热的热损失。因此传统锅炉热效率一般只能达到87%~91%。而冷凝式余热回收锅炉,它把排烟温度降低到50~70℃,充分回收了烟气中的显热和水蒸汽的凝结潜热,提升了热效率;冷凝水还可以回收利用。
④ 锅炉尾部采用热管余热回收技术;
余热是在一定经济技术条件下,在能源利用设备中没有被利用的能源,也就是多余、废弃的能源。它包括高温废气余热、冷却介质余热、废汽废水余热、高温产品和炉渣余热、化学反应余热、可燃废气废液和废料余热以及高压流体余压等七种。根据调查,各行业的余热总资源约占其燃料消耗总量的17%~67%,可回收利用的余热资源约为余热总资源的58%。
循环流化床锅炉的爆燃及预防
1 发生爆燃的几种情况
锅炉爆燃是由于炉膛内可燃物质的浓度在爆燃极限范围内,遇到明火或温度达到了燃点发生剧烈爆燃,燃烧产物在瞬间向周围空间产生快速的强烈突破。以下介绍几种循环流化床锅炉易发生爆燃的情况。
1.1 扬火爆燃
如果压火时燃料加得多或停的晚,使压火后床料内燃料的含量过多,这时燃料中的碳在缺氧状况下不充分燃烧产生大量的CO,同时燃料在炉内高温干熘挥发出甲烷、氢等可燃性气体。由于压火后床料表面温度降低,这些可燃性气体遇不到明火,便在锅炉炉膛内积聚。扬火时,随着风机的启动,床料开始流化,高温的床料从下面翻出,这时可燃性气体与明火接触,瞬间发生燃烧,如果可燃物的浓度在爆燃极限范围内,就会发生爆燃。个别司炉工在扬火时怕床温降得过快造成灭火,在启风机前先加入少量的燃料,新进入炉膛的燃料不但会挥发出可燃性气体,同时会有大量的煤粉参与燃烧,这样不但会增大产生爆燃的机率,还会加剧爆燃的强度。
1.2 大量返料突入爆燃
循环流化床锅炉都有物料循环系统。循环流化床锅炉运行时,大量固体颗粒在燃烧室、分离器和返料装置等组成的循环回路中循环,一般循环流化床锅炉的循环倍率为5~20,也就是说有5~20倍给煤量的返料灰需要经过返料装置返回燃烧室再次燃烧,循环物料是直径在0.1mm左右的细灰,有很好的流动性,在返料风的吹送下,连续不断地进入炉膛。运行中如果返料风过小,返料器内的物料就会停止流化或流动,从而造成返料器堵塞,细灰会在返料器内堆积,当细灰积累到一定时,细灰在自身重量的作用下产生流动或者由于操作调整增大风量使物料再次流化,这时成吨的细灰在短时间内进入炉膛。由于细灰的表面积大,此时返料风与空气快速混合充满炉膛,且细灰中一般含有20%左右的碳,在炉内高温环境下极易发生爆燃。
1.3 油气爆燃
流化床锅炉一般采用柴油点火,点火过程中因为油中的杂质、点火风的调配、油压太低等因素常会发生油枪灭火。灭火后,如果没及时发现、关闭油阀,被雾化的燃油会继续喷进炉膛内,这样从炉膛到尾部烟道甚至到烟囱出口都充满了油雾。这时如果再次点火或遇到其它明火,就会产生整个系统的爆燃。
2000年8月19日5点14分,平煤集团公司一自备电厂的35t/h循环流化床锅炉开始点火,油压在1.2~1.6MPa时,两支点火油枪雾化着燃油喷燃进入炉膛,450~500mm厚的底料开始流化预热,5点24分,即点火10min后,发现床温开始下降,司炉工检查发现两支点火枪已熄火,立即又用火把再次点火,随后就发生了炉膛内及燃烧系统爆燃和炉门窜出火舌伤人的事故。
事后检查发现,锅炉保温少部分振脱,密封与膨胀缝部分发生泄漏,由于正压大的作用尾部烟道的麻石块振掉,造成烟风系统短路,需进行停炉处理。
事后分析产生爆燃的原因有以下几方面:
(1)司炉工责任心不强。点火前没有认真试验点火枪的雾化情况,在发生点火中断的情况下,没进行认真检查处理而再次点火,是造成炉膛内超标的油烟浓度遇到明火发生爆燃事故的直接原因。
(2)点火风的调配不适与油压太低,造成喷油中断灭火,灭火后没有及时发现或发现后没有采取措施再次点火而发生爆燃的原因。
(3)油枪雾化不良,喷咀堵塞,油燃烧不充分,炉膛内有大量的油蒸汽。
所以,这次爆燃是由油枪供油中断灭火,大量油气充满燃烧于烟风系统中,可燃气体温度达到了燃点,遇到明火发生的剧烈爆燃。
1.4 烟道内可燃物再燃
在循环流化床锅炉运行中,有时可能发生烟道内可燃物再燃事故,这时会出现以下现象:排烟温度急剧增加,一、二次风出口温度也随之升高,烟道内及燃烧室内的负压急剧变化甚至变为正压;烟囱内冒黑烟,从引风机壳体不严处向外冒烟或向外喷火星等。
出现这种问题的原因主要有:燃烧调整不当,配风不合理,导致可燃物进入烟道;炉膛负压过大,将未燃尽的可燃物抽入烟道;返料装置堵灰使分离器效率下降,致使未燃尽颗粒填接进入烟道。
2 锅炉爆燃的预防
针对以上几种常见爆燃发生的原因,循环流化床锅炉操作中应采取下列措施防止爆燃。
(1)扬火时一定要先启动引风机通风5min后再启动送风机,以保证炉内积聚的可燃性气体排出,防止遇到明火。
(2)锅炉压火时一定要先停止给煤。当床温趋向稳定或稍有下降趋势时,再停送风机,防止压火后床料内煤量太多,产生大量可燃性气体及干燥的煤粉。
(3)压火后,扬火前尽量避免有燃料进入炉内,不可在扬火时先给燃料后启风机。
(4)当运行中发生返料堵塞存灰较多时,通过放灰系统将灰放掉。
(5)点火过程中如果发生油枪灭火,应先关闭油阀,保持风机运行通风5min后,再次点火。
(6)点火过程中,如果油枪喷咀堵塞,油枪雾化不良,导致床温上升困难,达不到加煤温度,应停止点火,对油枪喷咀进行清洗或更换后再点火。
(7)点火过程中,一定要控制好加煤量,一般总加煤量不能超过床料量的20%。
(8)如发现烟温不正常升高时,应加强燃烧调整,使风煤比调整到合适的范围内;若是由于返料装置堵灰造成的应立即将返料装置内的堵灰放净;若烟道内可燃物再燃烧使排烟温度超过300℃以上,应立即压火处理,严密关闭各人行孔门和挡板,禁止通风,然后在烟道内投入灭火装置或用蒸汽进行灭火,当排烟温度恢复正常时可再稳定一般时间,然后再打开人行孔检查、确认烟道内无火源并经引风机通风约15min后方可启动锅炉。
-
1
除尘风机滚动轴承失效表现
266
18
-
2
离心通风机刚度计算方法
274
18
-
3
风机防磨、防振、防积灰的措...
256
18
-
4 防止和消除风机磨损
235
18
-
5 紧记风机选型事项
244
18
-
6 风机的设计方法及合理选择风...
709
18
-
7 设计参数的选择与计算
389
18
-
8 风机的变型设计
255
18
-
9 旋转脱流与喘振的关系
317
18
-
10 高压风机修正计算
304
18
- 19 半裸旋蜗壳 267
- 20 轴流式通风机蜗壳 282
- 21 螺旋形蜗壳 334
- 22 轴向蜗壳 283
- 23 风机系统性能不佳的原因 273
- 24 系统阻力曲线对风机运行的... 383
- 25 内蜗壳 250
- 26 圆截面蜗壳 254
- 27 出口消音器 288
- 28 风机技术研究中心 306
周口市通用鼓风机有限公司
地址:河南省周口市川汇区周西路37号
电话微信同号:13137650060
传真:0394-8233409
邮箱:930948608@qq.com